Deep Neural Network Initialization With Decision Trees
نویسندگان
چکیده
منابع مشابه
Initialization of neural networks by means of decision trees
Performance of neural-networks learning is known to be sensitive to the initial weight setting and architecture|number of hidden layers and neurons in these layers. This shortcoming can be alleviated if some approximation of the target concept in terms of a logical description is available. The paper reports a successful attempt to initialize neural networks by decision-tree generators. The sys...
متن کاملProvide a Deep Convolutional Neural Network Optimized with Morphological Filters to Map Trees in Urban Environments Using Aerial Imagery
Today, we cannot ignore the role of trees in the quality of human life, so that the earth is inconceivable for humans without the presence of trees. In addition to their natural role, urban trees are also very important in terms of visual beauty. Aerial imagery using unmanned platforms with very high spatial resolution is available today. Convolutional neural networks based deep learning method...
متن کاملOn weight initialization in deep neural networks
A proper initialization of the weights in a neural network is critical to its convergence. Current insights into weight initialization come primarily from linear activation functions. In this paper, I develop a theory for weight initializations with non-linear activations. First, I derive a general weight initialization strategy for any neural network using activation functions differentiable a...
متن کاملDecision Stream: Cultivating Deep Decision Trees
Various modifications of decision trees have been extensively used during the past years due to their high efficiency and interpretability. Selection of relevant features for spitting the tree nodes is a key property of their architecture, at the same time being their major shortcoming: the recursive nodes partitioning leads to geometric reduction of data quantity in the leaf nodes, which cause...
متن کاملNeural Decision Trees
In this paper we propose a synergistic melting of neural networks and decision trees (DT) we call neural decision trees (NDT). NDT is an architecture a la decision tree where each splitting node is an independent multilayer perceptron allowing oblique decision functions or arbritrary nonlinear decision function if more than one layer is used. This way, each MLP can be seen as a node of the tree...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2019
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2018.2869694